资源类型

期刊论文 127

会议视频 1

年份

2023 15

2022 16

2021 14

2020 14

2019 12

2018 8

2017 5

2016 11

2015 11

2014 6

2013 3

2012 2

2011 3

2010 4

2009 2

2006 1

展开 ︾

关键词

纳米粒子 2

纳米颗粒 2

5型腺病毒 1

Au/Ti双功能催化剂 1

H2有效利用率 1

Pickering乳液 1

丙烯环氧化 1

二维纳米颗粒 1

光催化 1

光刻 1

内球配位 1

再生 1

分子成像 1

分布式经济调度;分布式优化;智能电网;连续时间优化算法;离散优化算法 1

可见光通信;游程长度受限码;有限状态机;最小汉明距离 1

吸附 1

城市建模;计算机图形学;机器学习;深度学习 1

密度泛函理论 1

差分进化;边界值问题;偏微分方程;有限差分法;数值计算 1

展开 ︾

检索范围:

排序: 展示方式:

Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic

Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 665-671 doi: 10.1007/s11705-019-1815-2

摘要: A strategy of intensifying the visible light harvesting ability of anatase TiO hollow spheres (HSs) was developed, in which both sides of TiO HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO shell-Au NPs, denoted as Au@Au(TiO , was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(TiO by 77% and Au@P25 by 52%, respectively, in phenol degradation.

关键词: TiO2 hollow spheres     plasmonic Au nanoparticles     confinement     visible light     photocatalytic degradation    

Particle size distribution and shape control of Au nanoparticles used for particle gun

S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 60-64 doi: 10.1007/s11705-013-1313-x

摘要: Au nanoparticles are expected for the media to transfer genes into plants. However, the control of particle size distribution (PSD) and shape of Au nanoparticles is too difficult to design and prepare particles with suitable quality for the gene supporting media. Reduction crystallization experiments were performed in aqueous solution in order to clarify the effect of feeding conditions such as feeding profile, feeding rate, and feeding amount on PSD and shape of Au nanoparticles. Ascorbic acid (AsA) was selected as a reducing agent because it is safe for plants. Au particles of 50 nm, 50–200 nm, and 150–400 nm were obtained in batch operation, single-jet, and double-jet, respectively. Moreover, in single-jet and double-jet, the mean size of the obtained Au particles increases with the decrease of feeding rate or the increase of feeding amount. It is concluded that PSD of Au nanoparticles can be controlled in the range of 50–400 nm by changing feeding conditions of AsA and HAuCl aqueous solution.

关键词: reduction crystallization     particle size distribution     gene transferring media    

Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and

Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel

《化学科学与工程前沿(英文)》 2019年 第13卷 第3期   页码 574-585 doi: 10.1007/s11705-019-1799-y

摘要: Fe O nanoparticles immobilized on porous titania in micron-size range were decorated with small-sized gold nanoparticles and used as a plasmonic catalyst for the reduction of 4-nitrophenol. Monodisperse-porous magnetic titania microspheres were synthesized with bimodal pore-size distribution by the sol-gel templating method. Small-sized gold nanoparticles obtained by the Martin method were attached onto the aminated form of the magnetic titania microspheres. A significant enhancement in the catalytic activity was observed using the gold nanoparticle-decorated magnetic titania microspheres compared to gold nanoparticle-decorated magnetic silica microspheres because of the synergistic effect between small-sized gold nanoparticles and titania. The synergistic effect for gold nanoparticle-attached magnetic titania microspheres could be explained by surface plasmon resonance-induced transfer of hot electrons from gold nanoparticles to the conduction band of titania. Using the proposed catalyst, 4-nitrophenol could be converted to 4-aminophenol in an aqueous solution within 0.5 min. The 4-nitrophenol reduction rates were 2.5–79.3 times higher than those obtained with similar plasmonic catalysts. The selection of micron-size, magnetic, and porous titania microspheres as a support material for the immobilization of small-sized gold nanoparticles provided a recoverable plasmonic catalyst with high reduction ability.

关键词: small-sized gold nanoparticles     magnetic titania microspheres     sol-gel template synthesis     plasmonic catalysis     4-nitrophenol    

Development of new transient liquid phase system Au-Sn-Au for microsystem technology

Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Stefania FERRARA, Jan PERNE

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 370-375 doi: 10.1007/s11465-010-0107-9

摘要: In the last decade, microsystems evolved to decisive technology in many technical applications. With increasing requirements on the performance of microsystems, more and more dissimilar materials are used in the same assembly. Correspondingly, suitable joining methods are required to fulfil the requirements on good properties of joints. In this study, a new transient liquid phase (TLP) system Au-Sn-Au was developed for potential medical applications in hybrid microsystems. The high and low melting phases Au and Sn were deposited onto diverse substrates by magnetron-sputter-ion plating. The coated substrates were soldered in a microsoldering station under different conditions. The influence of soldering conditions on the microstructure and properties of the joints was investigated. Results show that the developed solder led to high-quality joints that can be used in microsystems for medical applications.

关键词: transient liquid phase     microtechnology     soldering     diffusion     physical vapor deposition (PVD)    

基于超构表面等离激元透镜的高速并行近场直写纳米光刻系统 Article

胡跃强, 李苓, 王榕, 宋剑, 王鸿栋, 段辉高, 纪佳馨, 孟永钢

《工程(英文)》 2021年 第7卷 第11期   页码 1623-1630 doi: 10.1016/j.eng.2020.08.019

摘要:

具有简单、高效、低成本和高灵活性等特点的纳米加工技术在纳米尺度基础研究和原型验证中不可或缺。研究已证明,采用表面等离激元的近场光刻技术(即等离激元光刻)是一种有前景的解决方案。基于高速旋转基底上高刚度被动纳米间隙控制的加工系统是其中一种高效率加工方案。但是,为了研发出新一代具有高分辨率且可靠高效的纳米加工技术,需要探索一种更小更稳定的纳米间隙和新型等离激元透镜及其并行加工方案。因此,本文设计了一套并行等离激元直写纳米光刻系统。该系统应用了新型等离子浮动磁头,当转速为8~18 m⋅s−1时,其最小飞行高度可实现15 nm并且具有高平行度。本文还研制了一种多级的基于超构表面的偏振不敏感等离激元透镜。与传统的等离激元透镜相比,该透镜耦合的功率更大,焦点的范围更集中。该原型系统实现了约26 nm最小线宽的纳米结构并行光刻。该系统有望应用于高自由级、低成本的纳米加工技术,如平面光学元件和纳米机电系统。

 

关键词: 纳米加工     表面等离激元     光刻     等离子体飞行头     超构表面    

A mini review on chemical fixation of CO 2 : Absorption and catalytic conversion into cyclic carbonates

Weili DAI, Chaktong AU, Shenglian LUO, Shuangfeng YIN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 163-171 doi: 10.1007/s11705-009-0235-0

摘要: In this article, we present our research results on chemical fixation of CO using organobismuth compounds. We fabricated bismuth biphenoate complex, Zn-Mg-Al composite oxides, and SBA-15 or Al-SBA-15 immobilized hydroxyl ionic liquid for CO cycloaddition onto epoxides. The hypervalent bismuth compounds show good ability for association and dissociation with CO. The bismuth biphenolate complexes are catalytically effective for the cycloaddition reaction. The heterogeneous catalysts, viz. Zn-Mg-Al oxides and SBA-15 or Al-SBA-15 immobilized ionic liquid, are efficient for the synthesis of cyclic carbonate from CO and epoxide. It is found that the presence of a trace amount of water can improve the catalytic activity of the immobilized ionic liquid.

关键词: SBA-15     CO cycloaddition     Al-SBA-15 immobilized     CO     dissociation    

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1432-4

摘要:

• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them.

关键词: Constructed wetlands     Aquatic plants     Nanoparticles     Physiological activity     Biomass    

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1519-6

摘要:

• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

关键词: Dechlorination     Fe2O3 nanoparticles     Electron transfer     Microbial community    

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1572-1582 doi: 10.1007/s11705-021-2112-4

摘要: High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5‒280.5 μmol·L‒1, a low detection limit of 2.1 μmol·L‒1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

关键词: reduced graphene oxide     gold nanoparticles     electrochemical biosensor     cholesterol oxidase     cholesterol    

polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1450-2

摘要:

• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory.

关键词: Silver nanoparticles     Silver sulfide nanoparticles     Extracellular polymeric substances     Aggregation kinetics     Influence mechanisms    

澳大利亚向大规模氢工业迈进

Hartley、Vicky Au

《工程(英文)》 2020年 第6卷 第12期   页码 1346-1348 doi: 10.1016/j.eng.2020.05.024

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 108-171 doi: 10.1007/s11783-021-1396-4

摘要: The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.

关键词: Dye degradation     MnFe2O4 nanoparticles     Size and shape-control    

Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification

Chunming Wang, Huirong Lin, Chengsong Ye

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0874-6

摘要: The functional surface-modified MNPs were capable of capture with high efficiency. After induced to VBNC state by chlorination, cells could be separated by MNPs with an additional incubation process. This study provides a facile and economic method for VBNC cell enrichment and purification. GRAPHIC ABSTRACT Viable But Nonculturable (VBNC) Bacteria, which represent a unique population of microorganisms in drinking water systems, have become a potential threat to human health. Current studies on VBNC cells usually fail to obtain pure VBNC state bacteria, which may lead to inaccurate results. We therefore introduce a novel method of VBNC cell separation and purification in this paper. PAH-coated magnetic nanoparticles (MNPs) were synthesized and found to be capable of capturing and releasing bacterial cells with high efficiency. With the aid of an additional incubation step, VBNC cells were easily isolated and purified from normal bacteria using functional MNPs. Our method represents a new technique that can be utilized in studies of VBNCs.

关键词: Drinking water biosafety     VBNC     Nanoparticles     Magnetic separation and purification    

Effect of light scattering on the performance of a direct absorption solar collector

Kwang Hyun WON, Bong Jae LEE

《能源前沿(英文)》 2018年 第12卷 第1期   页码 169-177 doi: 10.1007/s11708-018-0527-5

摘要: Recently, a solar thermal collector often employs nanoparticle suspension to absorb the solar radiation directly by a working fluid as well as to enhance its thermal performance. The collector efficiency of a direct absorption solar collector (DASC) is very sensitive to optical properties of the working fluid, such as absorption and scattering coefficients. Most of the existing studies have neglected particle scattering by assuming that the size of nanoparticle suspension is much smaller than the wavelength of solar radiation (i.e., Rayleigh scattering is applicable). If the nanoparticle suspension is made of metal, however, the scattering cross-section of metallic nanoparticles could be comparable to their absorption cross-section depending on the particle size, especially when the localized surface plasmon (LSP) is excited. Therefore, for the DASC utilizing a plasmonic nanofluid supporting the LSP, light scattering from metallic particle suspension must be taken into account in the thermal analysis. The present study investigates the scattering effect on the thermal performance of the DASC employing plasmonic nanofluid as a working fluid. In the analysis, the Monte Carlo method is employed to numerically solve the radiative transfer equation considering the volume scattering inside the nanofluid. It is found that the light scattering can improve the collector performance if the scattering coefficient of nanofluid is carefully engineered depending on its value of the absorption coefficient.

关键词: direct absorption solar collector     plasmonic nanofluid     light scattering    

标题 作者 时间 类型 操作

Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic

Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan

期刊论文

Particle size distribution and shape control of Au nanoparticles used for particle gun

S. Kida, M. Ichiji, J. Watanabe, I. Hirasawa

期刊论文

Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and

Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel

期刊论文

Development of new transient liquid phase system Au-Sn-Au for microsystem technology

Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Stefania FERRARA, Jan PERNE

期刊论文

基于超构表面等离激元透镜的高速并行近场直写纳米光刻系统

胡跃强, 李苓, 王榕, 宋剑, 王鸿栋, 段辉高, 纪佳馨, 孟永钢

期刊论文

Fabrication and photocatalytic ability of an Au/TiO2

Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su

期刊论文

A mini review on chemical fixation of CO 2 : Absorption and catalytic conversion into cyclic carbonates

Weili DAI, Chaktong AU, Shenglian LUO, Shuangfeng YIN,

期刊论文

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

期刊论文

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

期刊论文

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

期刊论文

polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles

期刊论文

澳大利亚向大规模氢工业迈进

Hartley、Vicky Au

期刊论文

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

期刊论文

Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification

Chunming Wang, Huirong Lin, Chengsong Ye

期刊论文

Effect of light scattering on the performance of a direct absorption solar collector

Kwang Hyun WON, Bong Jae LEE

期刊论文